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Abstract

We present a novel algorithm for computing a
training set consistent subset for the nearest
neighbor decision rule. The algorithm, called
FCNN rule, has some desirable properties.
Indeed, it is order independent and has sub-
quadratic worst case time complexity, while
it requires few iterations to converge, and it
is likely to select points very close to the de-
cision boundary. We compare the FCNN rule
with state of the art competence preservation
algorithms on large multidimensional train-
ing sets, showing that it outperforms existing
methods in terms of learning speed and learn-
ing scaling behavior, and in terms of size of
the model, while it guarantees a comparable
prediction accuracy.

1. Introduction

The nearest neighbor decision rule (Cover & Hart,
1967) (NN rule in the following) assigns to an un-
classified sample point the classification of the near-
est of a set of previously classified points. For this
decision rule, no explicit knowledge of the underlying
distributions of the data is needed. A strong point of
the nearest neighbor rule is that, for all distributions,
its probability of error is bounded above by twice the
Bayes probability of error (Cover & Hart, 1967; Stone,
1977; Devroye, 1981). That is, it may be said that half
the classification information in an infinite size sample
set is contained in the nearest neighbor. Naive im-
plementation of the NN rule requires to store all the
previously classified data, and to compare then each
sample point to be classified to each stored point. In
order to reduced both space and time requirements,
several techniques to reduce the size of the stored data
for the NN rule have been proposed (see (Wilson &
Martinez, 2000; Toussaint, 2002) for a survey) referred
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to as training set reduction, training set condensation,
reference set thinning, and prototype selection algo-
rithms. In particular, among these techniques, train-

ing set consistent ones, aim at selecting a subset of
the training set that classifies the remaining data cor-
rectly through the NN rule. Using a training set con-
sistent subset, instead of the entire training set, to
implement the NN rule, has the additional advantage
that it may guarantee better classification accuracy.
Indeed, (Karaçali & Krim, 2002) showed that the VC
dimension of a NN classifier is given by the number
of reference points in the training set. Thus, in order
to achieve a classification rule with controlled gener-
alization, it is better to replace the training set with
a small consistent subset. Unfortunately, computing
a minimum cardinality training set consistent subset
for the NN rule turns out to be intractable (Wilfong,
1992). Several training set consistent condensation al-
gorithms have been introduced in literature. We point
out that, among the criteria characterizing condensa-
tion methods, the learning speed one is usually ne-
glected. But, in order to manage huge amounts of
data, methods exhibiting good scaling behavior are
definitively needed. In this work we present a novel
order independent algorithm for finding a training set
consistent subset for the NN rule, called FCNN rule,
and compare it with existing methods. The rest of
the paper is organized as follows. In Section 2, exist-
ing approaches are briefly described and compared to
the approach here proposed. In Section 3, the FCNN
rule is described and its main properties are stated. In
Section 4, experimental results are presented together
with a thorough comparison with existing methods.
Finally, in Section 5, conclusions are drawn.

2. Related Works and Contribution

Starting from the seminal work of (Hart, 1968), several
training set condensation algorithms have been intro-
duced, also known as instance-based, lazy, memory-
based, and case-based learners. These methods can be
grouped into three categories depending on the objec-
tives that they want to achieve (Brighton & Mellish,
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2002), i.e. competence preservation, competence en-

hancement, and hybrid approaches. The goal of com-
petence preservation methods is to compute a training
set consistent subset removing superfluous instances
that will not affect the classification accuracy of the
training set. Competence enhancement methods aim
at removing noisy instances in order to increase clas-
sifier accuracy. Finally, hybrid methods search for a
small subset of the training set that, simultaneously,
achieves both noisy and superfluous instances elimi-
nation. Competence enhancement and preservation
methods are combined in order to achieve the same
objectives of hybrid methods. While goals of enhance-
ment and preservation methods are clearly separated,
i.e. smoothing the decision boundary in the former
case and computing a possibly small training set con-
sistent subset in the latter, often it is not clear how
subsets computed by hybrid methods can be related
to the sets computed by the two other methods. Thus,
searching for a small training set consistent subset is
a per se relevant task, improving both classification
speed and classifier accuracy (Karaçali & Krim, 2002),
and computationally hard (Wilfong, 1992). Next, we
first briefly describe incremental training set consis-
tent subset methods for the NN rule and some other
related work, and then point out the contributions of
this work. A detailed survey of condensation methods
can be found in (Wilson & Martinez, 2000; Toussaint,
2002).

The concept of a training set consistent subset was in-
troduced by P.E. Hart (Hart, 1968) together with an
algorithm, called CNN rule (for Condensed NN rule),
to determine a consistent subset of the original sample
set. The algorithm uses two bins, called S and T . Ini-
tially, the first sample of the training set is placed in
S, while the remaining samples of the training set are
placed in T . Then, one pass through T is performed.
During the scan, whenever a point of T is misclassified
using the content of S it is transferred from T to S.
The algorithm terminates when no point is transferred
during a complete pass of T . The motivation for this
heuristic is that misclassified data lies close to the deci-
sion boundary. Nevertheless, the CNN rule may select
points far from the decision boundary. Furthermore,
the CNN is order dependent, that is it has the unde-
sirable property that the consistent subset depends on
the order in which the data is processed. The MCNN
rule (for Modified CNN rule) (Devi & Murty, 2002)
computes a training set consistent subset in an incre-
mental manner. The consistent subset S is initially set
to the empty set. During each main iteration of the
algorithm, first the points St of the training set T mis-
classified by using S are selected. Then, the centroids

C of the points in St are computed and used to clas-
sify St. St is thus partitioned into two sets, Sr and Sm

of points that are correctly classified and misclassified
respectively by using the centroids C. If the set Sm

is empty, then the set S is augmented with the set C,
otherwise St is set to Sr and the process is repeated
until Sm becomes empty. The algorithm terminates
when there are no misclassified points of T by using
S. Differently from the CNN rule, the MCNN rule is
order independent, that is, it always returns the same
consistent subset independently on the order in which
the data is processed. As claimed by the authors of
the algorithm, the MCNN rule may work well for data
with a gaussian distribution or that can be split up
into regions with a gaussian distribution, but, in gen-
eral, it is unlikely to select points close to the decision
boundary. Also, during each iteration of the MCNN
rule, at most m points can be added to the subset S,
where m is the number of classes in T , thus the method
could require a lot of iterations to converge. In order
to compute a small consistent subset S of the training
set T , (Karaçali & Krim, 2002) proposed the following
algorithm (NNSRM for Structural Risk Minimization
using the NN rule). Assume that the training set T
contains only two class labels. First, all pairwise dis-
tances among points having different class labels are
computed. Let {xi, yi} denote the pair having the ith
smallest distance, i ≥ 1. The set S is initialized to
{x1, y1}, i.e. to the closest points x1 and y1 from the
two classes, and a counter k is initialized to 2. Next,
until the set S misclassifies at least a point in T , the
following steps are performed: if {xk, yk} is not con-
tained in S, then S is augmented with both xk and yk;
in any case, k is set to k+1. Nevertheless, the method
is costly. Indeed, the complexity of the NNSRM algo-
rithm is O(|T |3). Furthermore, we note that the size
of the condensed set computed is sensitive to the pairs
having greatest distances. Indeed, assume that two
points from opposite classes in the training set are far
from the other training set points, and such that their
distance is greater than the distance of each other pair
of the remaining points from opposite classes. Then, a
training set consistent subset must contain these two
points and, hence, all the training set points. Finally,
we recall the RNN rule (Gates, 1972), a costly post-
processing step that can be applied to every compe-
tence preservation method, the SNN rule (Ritter et al.,
1975), having worst case exponential running time, the
MCS algorithm (Dasarathy, 1994), involving compu-
tation of the so called nearest unlike neighbors, that
intends to compute a subset close to the minimal one,
and approximate optimization techniques (Liu & Nak-
agawa, 2001), that can be applied only to small sized
data set.
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CNN rule (170 points) MCNN rule (199 points) NNSRM rule (495 points) FCNN rule (140 points)

Figure 1. Example of training set consistent subsets computed by the CNN, MCNN, NNSRM, and FCNN rules.

2.1. Contribution

In this work we present a novel algorithm for the com-
putation of a training set consistent subset for the
NN rule. The algorithm, that we call Fast CNN rule
(FCNN for short), works as follows. First, the con-
sistent subset S is initialized to the centroids1 of the
classes contained in the training set T . Then, during
each iteration of the algorithm, for each point p in S,
a point q of T belonging to the Voronoi cell of p,2 but
having a different class label, is selected and added to
S. The algorithm stops when no further point can be
added to S, i.e. when T is correctly classified using S.
Despite being quite simple, the FCNN rule has some
desirable properties. Indeed, it is order independent,
has sub-quadratic time complexity, requires few itera-
tions to converge, and it is likely to select points very
close to the decision boundary. For example, Figure
1 compares the consistent subsets computed by the
CNN, MCNN, NNSRM, and FCNN rules on a train-
ing set composed by 9,000 points uniformly distributed
into the unit square and partitioned in two classes by
a circle of diameter 0.5. As already noted elsewhere
(Wilson & Martinez, 2000), training set reduction al-
gorithms can be characterized by their storage reduc-
tion, classification speed increase, generalization accu-
racy, noise tolerance, and learning speed. Among these
criteria, the learning speed one is usually neglected.
But, in order to be practicable on large training sets or
in knowledge discovery applications requiring a learn-
ing step in their cycle, the method should exhibit good
learning behavior. The contribution of this work can
be summarized as follows. (i) We present a novel or-

der independent algorithm, called FCNN rule, for the
computation of a training set consistent subset for the
NN rule. It is the second proposal of an order in-
dependent algorithm after the MCNN rule (Devi &
Murty, 2002). (ii) We prove that the FCNN rule has

1Given a set S of points having the same class label,
the centroid of S is the point of S which is closest to the
geometrical center of S.

2The Voronoi cell of point p ∈ S is the set of all points
that are closer to p than to any other point in S.

worst case sub-quadratic time requirements, and de-
scribe an implementation exploiting the triangular in-
equality that sensibly reduces the worst case compu-
tational cost. (iii) We compare the FCNN rule with
state of the art competence preservation algorithms
on large and high dimensional training sets, showing
that the FCNN rule outperforms existing methods in
terms of learning speed and learning scaling behavior,
and in terms of size of the model, while it guarantees
a comparable prediction accuracy.

3. Algorithm

We first give some preliminary definitions. In the fol-
lowing we denote by T a labelled training set from a
metric space with distance metrics d. Let p be an ele-
ment of T . We denote by nn(p, T ) the nearest neighbor
of p in T according to the distance d. We denote by
l(p) the label associated to p. Given a point q, the
NN rule NN(q, T ) assigns to q the label of the near-
est neighbor of q in T , i.e. NN(q, T ) = l(nn(q, T )).
A subset S of T is said to be a training set consis-

tent subset of T if, for each p ∈ T , l(p) = NN(p, S).
Let S be a subset of T , and let p be an element of
S. We denote by Vor(p, S, T ) the set {q ∈ T | ∀p′ ∈
S,d(p, q) ≤ d(p′, q)}, that is the set of the elements
of T that are closer to p than to any other element
p′ of S. Furthermore, we denote by Voren(p, S, T ) the
set {q ∈ Vor(p, S, T ) | l(q) 6= l(p)}. We denote by
Centroids(T ) the set containing the centroids of each
class label in T . The following Theorem states the
property exploited by the FCNN rule in order to com-
pute a training set consistent subset.

Theorem 3.1 S is a training set consistent subset
of T for the NN rule iff for each element p of S,
Voren(p, S, T ) is empty.

3.1. The FCNN Rule

The algorithm FCNN rule is shown in Figure 2. It
initializes the consistent subset S with a seed element
from each class label of the training set T . In particu-
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Algorithm FCNN rule
Input: A training set T ;
Output: A training set consistent subset S of T ;
Method:

S = ∅;
∆S = Centroids(T );
while (∆S 6= ∅) {

S = S ∪ ∆S;
∆S = ∅;
for each (p ∈ S)

∆S = ∆S ∪ {rep(p, Voren(p, S, T ))};
}
return(S);

Figure 2. The FCNN rule.

lar, the seeds employed are the centroids of the classes
in T . The algorithm is incremental: during each iter-
ation the set S is augmented until the stop condition,
given by Theorem 3.1, is reached. For each element
of S, a representative element of Voren(p, S, T ) w.r.t.
p, denoted as rep(p,Voren(p, S, T )) in Figure 2, is se-
lected and inserted into S. Given p ∈ T and a subset
X ⊆ T , the representative rep(p,X) of X w.r.t. p can
be defined in different ways. We investigate the behav-
ior of two different definitions for rep(p,X). The first
definition, we call FCNN1 the variant of the FCNN
rule using this definition, selects the nearest neighbor
of p in X, that is rep(p,X) = nn(p,X). The sec-
ond definition, we call FCNN2 the variant using it,
selects the class centroid in X closest to p, that is
rep(p,X) = nn(p,Centroids(X)). If, during an itera-
tion, no new element can be added to S, then, by The-
orem 3.1, S is a training set consistent subset of T , and
the algorithm terminates returning the set S. Figure
4 reports an example of execution of the FCNN1 rule.
The data set considered is composed by 2,000 points
on the plane. Half of the points belong to one of two
concentric spirals representing two distinct classes. In
this case, the algorithm performs nine iterations and
returns a subset composed by 54 points (the FCNN2
rule on the same data set performs ten iterations and
computes a subset composed by 74 points). It is clear
from these figures that the FCNN rule rapidly con-
verges to a solution. Indeed, the number of points
contained in the subset could double at the end of each
iteration. This is due to the fact that, for each point
p such that Voren(p, S, T ) is not empty, a new point is
added to the set S. The following theorem states the
main properties of the algorithm.

Theorem 3.2 The algorithm FCNN rule (i) termi-

nates in a finite time, (ii) computes a training set con-

sistent subset, and (iii) is order independent.

Figure 3 shows the implementation of the FCNN1 rule.

Algorithm FCNN1 rule
Input: A training set T ;
Output: A training set consistent subset S of T ;
Method:

for each (p ∈ T )
nearest[p] = undefined;

S = ∅;
∆S = Centroids(T );
while (∆S 6= ∅) {

S = S ∪ ∆S;
for each (p ∈ S)

rep[p] = undefined;
for each (q ∈ (T − S)) {

for each (p ∈ ∆S)
if (d(nearest[q], q) < d(p, q))

nearest[q] = p;
if ((l(q) 6= l(nearest[q])) && (d(nearest[q], q)

< d(nearest[q], rep[nearest[q]])))
rep[nearest[q]] = q;

}
∆S = ∅;
for each (p ∈ S)

if (rep[p] is defined) ∆S = ∆S ∪ {rep[p]};
}
return(S);

Figure 3. The FCNN1 rule.

The algorithm maintains in the array nearest, for each
training set point q, the closest point nearest[q] of q in
the set S, and in the array rep, for each point p in S, its
current representative rep[p] of the misclassified points
lying in the Voronoi cell of p. During each iteration,
the array nearest and rep must be updated. Let ∆S
be the set of points added to the set S at the beginning
of the current iteration. To update the array nearest,
it is sufficient to compare the training set points in
(T − S) with the points in the set ∆S, as the nearest
neighbors in S − ∆S of the points in (T − (S − ∆S))
where computed in the previous iterations, and are al-
ready stored in nearest. After having computed the
closest point nearest[q] in ∆S, and hence in S, of a
point q in (T − S), the array rep can be updated ef-
ficiently as follows. If the label of q is different from
the label of nearest[q], then q is misclassified. In this
case, if the distance from nearest[q] to q is less than
the distance from nearest[q] to its current associated
representative rep[nearest[q]], then rep[nearest[q]] is
set to q. The following theorem states an upper bound
to the complexity of the FCNN rule.

Theorem 3.3 The FCNN rule requires at most |T |·|S|
distance computations using O(|T |) space.

The FCNN2 has a very similar implementation. The
only difference lies in the update of the array rep. In-
deed, in order to determine the centroids of the mis-
classified points of each Voroni cell induced by the
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Iteration #1, subset size=2 Iteration #2, subset size=4 Iteration #3, subset size=8

Iteration #4, subset size=12 Iteration #5, subset size=20 Iteration #6, subset size=30

Iteration #7, subset size=40 Iteration #8, subset size=50 Iteration #9, subset size=54

Figure 4. Example of execution of the FCNN1 rule.

points in S, the FCNN2 rule performs at the end of
each main iteration a supplemental training set scan.

3.2. Exploiting the Triangular Inequality

In a metric space the FCNN rule can take advantage
of the triangular inequality in order to avoid the com-
parison of each point in (T − S) with each point in
∆S. During the generic ith main iteration, for each
p ∈ Si−1, the Voronoi cell Vor(p, Si−1, T )3 is visited,
and the points q ∈ Vor(p, Si−1, T ) are compared with
the points in ∆Si. Before starting the comparison, the
distances among the point p and the points in ∆Si are
computed, and the points in ∆Si are sorted in order of
increasing distance from p. Then, instead of compar-
ing each point q in Vor(p, Si−1, T ) with each point in
∆Si, each q is compared with the points in ∆Si having
distance from p less than twice the distance from q and
p. Indeed, by the triangular inequality, they are all and
the only points of ∆Si candidate to be closer to q than
p. In the worst case, this implementation of the FCNN
rule requires |T | · |S|+

∑
i<j |∆Si| · |∆Sj | · log |∆Sj | dis-

tance computations, i.e. slightly worse than the upper
bound of Theorem 3.3, and has no additional space
requirements. Nevertheless, the last implementation
guarantees great savings in terms of distances com-
puted, and definitively outperforms the previous one.

3Partitioning of points in Voronoi cells is induced by the
array nearest.

Data set name Size Features Classes

Census 190,495 13 2
Chessboard 64,000 2 2
Forest Cover Type 100,000 54 7
DARPA 458,301 22 5
Shuttle 43,500 9 7
Spiral 1,000,000 2 2

Table 1. Data sets used in the experiments.

4. Experimental Results

In this section we present a number of experiments per-
formed using the FCNN rule, and a thorough compari-
son with the CNN and MCNN methods. The NNSRM
rule is impracticable on large training sets, hence we do
not consider it further. As for the FCNN rule, we used
the algorithm exploiting the triangular inequality de-
scribed in Section 3.2. As for the MCNN rule, we aug-
mented the method with the technique exploiting the
triangular inequality described in Section 3.2. As for
the CNN rule, we avoided repeated distance computa-
tions. The data set employed are summarized in Ta-
ble 1, and briefly described next. Census is composed
by data extracted from the census bureau database4.
Chessboard is a synthetic data set composed by points
uniformly distributed into the unit square and grouped
in two classes representing cells of a 8× 8 chessboard.
Forest Cover Type contains data from the US Forest
Service5. The DARPA 1998 intrusion detection data
consists of network connection records of several in-
trusions6. Shuttle was used in the European StatLog
project5. Spiral is a synthetic data set composed by
two concentric spirals representing two distinct classes.

Execution time, size and accuracy. Table 2 com-
pares the FCNN1, FCNN2, MCNN, and CNN rules
on the data sets above described, using the Euclidean
distance. The table reports execution time7, num-
ber of iterations performed, empirical complexity, size
of the condensed set, and classification accuracy ob-
tained using the condensed set. In order to estimate
the classification accuracy of each rule, we used 10-
fold cross-validation. The empirical complexity is the
ratio log D/ log |T |, where D denotes the number of
distances computed by the method, and provides an
estimate of its computational complexity. Although it
provides a short summary, it is not sufficient to char-
acterize the effective effort of the method, since the
execution time is influenced also by the number of it-

4www.census.gov/ftp/pub/DES/www/welcome.html.
5www.kdd.ics.uci.edu.
6www.ll.mit.edu/IST/ideval/index.html.
7We ran the experiments on a Pentium IV 2.66GHz

based machine.
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Data set Method Execution Iterations Empirical Size Accuracy
name time [sec] complexity [%]

FCNN1 240.33 36 1.69 24,614 93.06
FCNN2 185.42 26 1.62 25,248 93.05

Census MCNN 4,283.73 19,251 1.86 27,666 93.02
CNN 1,818, 77 6 1.84 27,836 93.11
training set – – – 171,445 94.61
FCNN1 4.17 54 1.56 3,082 97.14
FCNN2 3.03 20 1.47 3,707 97.14

Chessboard MCNN 84.36 2,019 1.76 3,995 97.03
CNN 28.30 5 1.75 3,812 97.11
training set – – – 57,599 98.75
FCNN1 184.34 33 1.67 15,972 90.68
FCNN2 178.06 24 1.65 16,255 90.90

Forest MCNN 2,341.81 7,938 1.86 16,560 90.66
Cover Type CNN 1,294, 25 5 1.84 16,920 90.69

training set – – – 90,000 92.82
FCNN1 63.09 245 1.44 3,252 99.22
FCNN2 27.01 23 1.37 3,803 99.20

DARPA MCNN 583.91 2,566 1.56 4,275 99.21
CNN 732.81 14 1.64 4,078 99.20
training set – – – 412,470 99.31
FCNN1 0.35 21 1.36 225 99.75
FCNN2 0.67 16 1.35 257 99.69

Shuttle MCNN 1.67 144 1.45 286 99.71
CNN 1.66 4 1.53 280 99.71
training set – – – 39,150 99.77
FCNN1 2.39 9 1.21 57 100.00
FCNN2 3.75 10 1.22 80 100.00

Spiral FMCNN 22.01 46 1.37 88 100.00
CNN 6.30 2 1.32 77 100.00
training set – – – 900,000 100.00

Table 2. Experimental results.

erations and by the number of training set passes per
iteration. Next, we comment on the results shown in
Table 2. As for the number of iterations, we observe
that the CNN rule requires few iterations to converge,
the MCNN rule requires a lot of iterations, while the
FCNN1 and FCNN2 require a little number of itera-
tions. The FCNN rule requires more iterations than
the CNN rule, but notably less than the MCNN rule.
We recall that the CNN and the FCNN1 rule perform
one training set pass per iteration, that the FCNN2
rule performs two training set passes per iteration,
and that the MCNN rule performs several training set
passes per iteration. As for the empirical complexity,
the FCNN1 and FCNN2 rules outperform both the
MCNN and the CNN rule. The FCNN2 rule performs
in some cases slightly better than the FCNN1 rule,
while the CNN and the MCNN rule seem comparable.
As for the execution time, the FCNN1 and FCNN2
rules outperform both the two other rules by at least
an order of magnitude. This is a consequence of the
fact that the FCNN rule has a lower empirical com-
plexity, requires few iterations to converge, and one
(or two) training set pass per iteration. As for the

size of the training set consistent subset, the set com-
puted by the FCNN1 rule was always the smallest.
Finally, as for the classification accuracy, the FCNN
rules achieves almost always the best values, though
the quality of classification is about the same for all
the methods.

Learning behavior. Figure 5 shows the learning
behavior of the FCNN1, FCNN2, MCNN, and CNN
rules on the data sets Census, Forest Cover Type, and
DARPA. The curves show (from left to right) the accu-
racy of the subset Si computed during the ith iteration
of the algorithms in classifying the overall training set
T , the number of points |∆Si| added to Si during each
iteration, the size |Si| of the subset Si versus the nor-
malized iteration number i

imax

, and the distances com-
puted during each iteration. As for the accuracy (first
column), we note that the FCNN2 rule smoothly con-
verges to consistency, while the curve of the FCNN1
rule swings during the initial iterations (notice that
the graphic of the DARPA data set is in logarithmic
scale). We note also that the area under the curve of
the FCNN2 rule is always the greatest. As for the size
of ∆Si (second column), interestingly the FCNN rule
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Figure 5. Learning behavior.

follows a gaussian-like distribution. Though the area
under the curves of the FCNN1 and FCNN2 rules is
nearly identical, we note that the FCNN1 rule reaches
its maximum later, and hence requires more iterations
to converge. Analogous considerations hold for the
course of |Si| (third column). The number of iter-
ations performed by the methods is reported in the
figure legend. We note that the FCNN1 rule always
computes the smallest consistent subset. The curve
of the MCNN rule is a straight line as the number of
points added during each iteration is almost constant
and given by the number of class labels in the training
set, the curve of the CNN rule is a step as almost all
the points are selected during the first and second it-
eration, while the curves of the FCNN rule resemble a
sigmoid. Finally, as for the distances computed (fourth
and fifth columns), solid lines represent the number of
distances actually calculated by the FCNN rule ex-
ploiting the triangular inequality, while dotted lines
represent the worst case cost of the same algorithm.
Dashed lines represent the distances required when the
triangular inequality is not exploited. It is clear from
these figures that great savings are obtained, since the
area between the solid and the dashed curve is at least
one order of magnitude greater than the area under
the solid curve.

Scaling analysis. Figure 6 shows the scaling anal-
ysis on the training sets Census, Forest Cover Type,
and DARPA. As for the execution time (first column),
both the FCNN1 and FCNN2 rules clearly outperform
the other two rules. The CNN rule performs better
than the MCNN rule on the first two data sets. We
note that the number of iterations performed (second
column) by the FCNN and the CNN rules is almost
constant with the training set size, while the itera-
tions performed by the MCNN rule increases of some
order of magnitude with the training set size. As for
the empirical complexity (third column) the FCNN
rule performs better. The FCNN2 rule was always the
best. On the Census data set the empirical complex-
ity increases with the size, while on the DARPA data
set it decreases, for all methods. Forest Cover Type

is hard to manage by the CNN and the MCNN rules,
whose empirical complexity is constant, while it less
difficult for the FCNN rule, whose empirical complex-
ity decreases with the data set size. Finally, as for the
consistent subset size (fourth column), the curves of
the various methods have the same behavior, but it is
worth to note that on these data sets the FCNN rules
computes the smallest training set consistent subsets.
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Figure 6. Scaling analysis.

5. Conclusions

We presented a novel order independent method for
computing a training set consistent subset for the NN
rule and compared it with existing state of the art com-
petence preservation methods. The observed superior
learning speed of the new method is substantiated by
the learning behavior comparison. This work can be
extended in several ways, e.g., studying the impact of
different metrics on the FCNN rule, and the behavior
of FCNN-based hybrid methods.
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